Langevin Equation for General Harmonic Heat Bath. I
نویسندگان
چکیده
منابع مشابه
The Langevin Equation for a Quantum Heat Bath
We compute the quantum Langevin equation (or quantum stochastic differential equation) representing the action of a quantum heat bath at thermal equilibrium on a simple quantum system. These equations are obtained by taking the continuous limit of the Hamiltonian description for repeated quantum interactions with a sequence of photons at a given density matrix state. In particular we specialise...
متن کاملLow Density Limit and the Quantum Langevin Equation for the Heat Bath
We consider a repeated quantum interaction model describing a small system HS in interaction with each one of the identical copies of the chain ⊗ N C n+1, modeling a heat bath, one after another during the same short time intervals [0, h]. We suppose that the repeated quantum interaction Hamiltonian is split in two parts: a free part and an interaction part with time scale of order h. After giv...
متن کاملHarmonic Moments and an Inverse Problems for the Heat Equation
The paper is devoted to the solution of the inverse boundary problem for the heat equation. Let Ω be a connected bounded domain in R n (n ≥ 2) with C l (l ≥ 2) boundary Γ. Consider the mixed problem for the heat equation (1.1) (ρ(x)∂ t − −)u f (t, x) = 0 in (0, +∞) × Ω, u f (t, x) = f (t, x) o n(0 , +∞) × Γ, u f (0, x) = 0 on Ω. The density ρ(x) is a C l+σ , 0 < σ < 1, function on...
متن کاملHarmonic Moments and an Inverse Problem for the Heat Equation
The paper is devoted to the solution of the inverse boundary problem for the heat equation. Let Ω be a connected bounded domain in R n (n ≥ 2) with C l (l ≥ 2) boundary Γ. Consider the mixed problem for the heat equation (1.1) (ρ(x)∂ t − −)u f (t, x) = 0 in (0, +∞) × Ω, u f (t, x) = f (t, x) o n(0 , +∞) × Γ, u f (0, x) = 0 on Ω. The density ρ(x) is a C l+σ , 0 < σ < 1, function on...
متن کاملFractional Langevin equation.
We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both subdiffusion and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1973
ISSN: 0033-068X
DOI: 10.1143/ptp.49.129